Financial Simulation Hw
Essay by juan • April 17, 2017 • Coursework • 570 Words (3 Pages) • 948 Views
Mike Pena
Prof. Aparna Gupta
Financial Simulation
HW09
1 Implied Volatility
Note: Implied Vol Decreases as option becomes ITM
[pic 1]
[pic 2]
2 CEV
[pic 3]
2 Protective Put
[pic 4]
[pic 5]
OUTPUT
Q2. Protective Put
Initial Cost:230.4262
Payoff per Share: mean (4.7916), sd (6.4967)
Profit per Share: mean (1.0354), sd (6.4967)
2 Stop Loss
OUTPUT
Q2. Stop-Loss
Cost of Strategy:1.3356
MATLAB CODE
% First clear the memory and close all open figures:
clear all; close all;
% Clear the screen:
clc;
% Change the working directory: This is the working directory
% where MATLAB looks for files (data inputs, .m files such as
% functions, etc.) and outputs results.
cd 'C:\Users\penam2\Desktop\RPI\Spring 2017\Financial Simulation\Homework\HW09';
% If you want to read files from another folder (maybe you
% have data stored in another location), you can use the addpath
% function:
addpath 'C:\Users\penam2\Desktop\RPI\Spring 2017\Financial Simulation\Homework\HW09';
% Quandl authentication token
Quandl.api_key('xokQnzdREAWG5absGuY3');
%% Question 1. Implied Volatility
% Obtain Data:
stock{1}='GOOG/NYSE_GS';
n=length(stock);
for i=1:n
data{i}=Quandl.get(stock{i},'collapse','monthly', ...
'start_date','2014-1-1','end_date','2017-1-1','type','data');
end
% Extract prices and compute returns:
prices_Dates=data{1}(:,1);
prices_GS=data{1}(:,5);
returns_Dates=data{1}(1:end-1,1);
returns_GS=log(prices_GS(1:end-1,:)./prices_GS(2:end,:));
% Compute Statistics:
P0_GS=prices_GS(1);
Mean_GS=mean(returns_GS(:));
Std_GS=std(returns_GS(:));
% Obtain Data:
stock{1}='GOOG/NYSE_JPM';
n=length(stock);
for i=1:n
data{i}=Quandl.get(stock{i},'collapse','monthly', ...
'start_date','2014-1-1','end_date','2017-1-1','type','data');
end
% Extract prices and compute returns:
prices_Dates=data{1}(:,1);
prices_JPM=data{1}(:,5);
returns_Dates=data{1}(1:end-1,1);
returns_JPM=log(prices_JPM(1:end-1,:)./prices_JPM(2:end,:));
% Compute Statistics:
P0_JPM=prices_JPM(1);
Mean_JPM=mean(returns_JPM(:));
Std_JPM=std(returns_JPM(:));
% Set the variable inputs:
% Goldman Sachs Calls
S0=226.67;%4/13/2017 @ 11:48AM
K_GS=[70,75,80,180,185,190,270,280,290];
r=.02;
T=9.2/12; %4/13/2017 - 1/19/2018
vol=Std_GS;
P=[178.82,172.14,168.9,51.9,50.55,45.1,4.63,3.15,2.2];
[m,n]=size(P);
Implied_Vol_GS=zeros(m,n);
% Option Implied Volatility:
% Set the variable inputs:
a=0;
b=10;
x0=2;
tol=1e-5;
for i=1:n
target=P(i);
K=K_GS(i);
c=@(vol) S0*normcdf((log(S0/K)+(r+(vol^2)/2)*T)/(vol*sqrt(T)))-K*exp(-r*T)*normcdf((log(S0/K)+(r+(vol^2)/2)*T)/(vol*sqrt(T))-(vol*sqrt(T)));
dc=@(vol) (S0*exp(-(log(S0/K) + T*(vol^2/2 + r))^2/(2*T*vol^2))*((2^(1/2)*T^(1/2))/2 - (2^(1/2)*(log(S0/K) + T*(vol^2/2 + r)))/(2*T^(1/2)*vol^2)))/pi^(1/2) + (2^(1/2)*K*exp(-T*r)*exp(-(T^(1/2)*vol - (log(S0/K) + T*(vol^2/2 + r))/(T^(1/2)*vol))^2/2)*(log(S0/K) + T*(vol^2/2 + r)))/(2*T^(1/2)*vol^2*pi^(1/2));
p =@(vol) -S0*normcdf(-((log(S0/K)+(r+(vol^2)/2)*T)/(vol*sqrt(T))))+K*exp(-r*T)*normcdf(-((log(S0/K)+(r+(vol^2)/2)*T)/(vol*sqrt(T))-(vol*sqrt(T))));
dp=@(vol) (S0*exp(-(log(S0/K) + T*(vol^2/2 + r))^2/(2*T*vol^2))*((2^(1/2)*T^(1/2))/2 - (2^(1/2)*(log(S0/K) + T*(vol^2/2 + r)))/(2*T^(1/2)*vol^2)))/pi^(1/2) + (2^(1/2)*K*exp(-T*r)*exp(-(T^(1/2)*vol - (log(S0/K) + T*(vol^2/2 + r))/(T^(1/2)*vol))^2/2)*(log(S0/K) + T*(vol^2/2 + r)))/(2*T^(1/2)*vol^2*pi^(1/2));
% Compute implied Vol for call options:
[ vol0, iter0 ] = myBisection( c, a, b, tol, target );
Implied_Vol_GS(i)=vol0;
end
figure
plot(K_GS,Implied_Vol_GS);
title('Q1. Implied Volatility (GS)');
xlabel('K') % x-axis label
ylabel('Implied Vol') % y-axis label
% JP Morgan Calls
S0=85.75;%4/13/2017 @ 11:48AM
K_JPM=[40,45,57.4,60,75,80,85];
r=.02;
T=2.1/12; %4/13/2017 - 6/16/2017
vol=Std_JPM;
P=[47.28,41.99,30.15,27.35,11.91,7.48,3.48];
[m,n]=size(P);
Implied_Vol_JPM=zeros(m,n);
% Option Implied Volatility:
% Set the variable inputs:
a=0;
b=10;
x0=2;
tol=1e-5;
...
...